Sl. No.:

QUESTION BOOKLET

Booklet Id.: JM/01/A/150

Roll No.			

Time Allowed: 2 hrs 30 mins

Total Marks: 150

DO NOT OPEN THE QUESTION BOOKLET UNTIL YOU ARE ASKED TO DO SO

Read the following instructions carefully before you begin to answer the questions.

INSTRUCTIONS TO CANDIDATE

- 1) You are required to write your Roll Number in the prescribed place provided at the top of this Question Booklet and the OMR Answer Sheet.
- 2) You are required to mention the Question Booklet Id. as mentioned above in your OMR Answer Sheet.
- 3) Please ensure that the Question Booklet has the required number of pages immediately after opening the same. In case there is any shortage of any page(s), please report the same to the invigilator.
- 4) This Question Booklet contains 100 multiple choice questions to be answered in a separate OMR Answer Sheet by using **Blue/Black ball pen** only. Do not use **Ink/Gel pen**.
 - ➤ All questions are compulsory and carry equal marks.
 - ➤ There is no negative marking for wrong answers.
 - **Directions for answering the questions:**

Each question is followed by four alternative suggested answers. You are required to select the correct answer and darken the appropriate circle of a, b, c and d by Blue/ Black ball pen in such a manner that the circle is completely darkened.

Example: Question No.63

Given below are four odd words, three are alike in some way and one is different. Find the odd word:

(a) Ganga

(b) Brahmaputra

(c) Jamuna

(d) Himalaya

Here the correct answer is Himalaya, i.e., (d). So, in the OMR Answer Sheet the darkened circle should be marked as

63. (a) (b) (c)

- 5) In any case, if more than one circle against each question is darkened, that particular question would be treated as invalid and will not be evaluated.
 - At the end of the examination, the candidate should ensure that he/ she submits the OMR Answer Sheet and the Question Booklet to the invigilator before leaving the examination hall/ room
- 6) This Question Booklet cannot be carried with you. You have to submit this along with your OMR Answer Sheet to the invigilator.
- 7) No rough work is to be done on the OMR Answer Sheet. You can do the rough work on the space provided on the Question Booklet.
- 8) Use and possession of mobile phones and electronic gadgets/calculators are strictly prohibited inside examination hall/room.
- 9) Non compliance with any of the above instructions will make a candidate liable to action/ penalty as may be deemed fit.

Space for Rough Work

Choose the correct option for each question and darken the circle against the option in the OMR Answer Sheet.

a) (25, 12, 16, 13, 10,	8 , 14)	b) (25, 14, 13, 16,	10, 8, 12)	
		u, (23, 11, 12, 13	, 10, 6, 10,	
{				
static int	p=0;			
• • •	•			
If (ı	-			
	return f(n-2) + 2 ;		
	}			
	return f(n-1) +	0;		
	1) 2			
•	•	c) 7		d) 18
,	,	•		u) 10
_	implexity of qui	_		
	ture	-		
c) Parallel structure		a) Pointe	er to structure	
_	-			-
a) Dequeue	b) Queue	c) Priorit	y queue	d) None of these
A binary tree of height h	has at least h r	odes and atmost _		nodes.
a) 2h	b) 2 ^h	c) 2 ^{h-1}		d) 2 ^h -1
The height of a binary h	eap with n node	es is equal to		
a) O(n)	b) O(log n)	c) O(n lo	og n)	d) O(n²)
The term optimal can me	ean			
a) shortest	b) cheapest	c) fastes	t	d) All of these
Which algorithm uses th	e divide, conqu	er, and combine al	gorithmic para	adigm?
a) Selection sort				
c) Merge sort		d) Radix	sort	
. In which of the following	ng hash functio	ns, do consecutive	keys map to c	onsecutive hash values?
	_			
c) Folding method		d) Mid s	quare method	
	a) (25, 12, 16, 13, 10, c) (25, 14, 16, 13, 10, c) (15, 14, 16, 13, 10, c) (16, 16, 16, 16, 16, 16, 16, 16, 16, 16,	a) (25, 12, 16, 13, 10, 8, 14) c) (25, 14, 16, 13, 10, 8, 12) Consider the following C code: int f (int n) { static int p=0; If (n <=0) return 1; If (n > 3) {p=n; return f(n-1) + p } What is the value of f(4)? a) 5 b) 4 What is the Average complexity of quidal O(nlogn) c) O(n) A structure that can be placed within and a) Self referential structure c) Parallel structure Huffman algorithm can be implemented a) Dequeue b) Queue A binary tree of height h has at least h n a) 2h b) 2h The height of a binary heap with n node a) O(n) b) O(log n) The term optimal can mean a) shortest b) cheapest Which algorithm uses the divide, conque a) Selection sort c) Merge sort In which of the following hash function a) Multiplication method	a) (25, 12, 16, 13, 10, 8, 14) b) (25, 14, 13, 16, c) (25, 14, 16, 13, 10, 8, 12) d) (25, 14, 12, 13, 16, c) (25, 14, 16, 13, 10, 8, 12) d) (25, 14, 12, 13, 16, c) (25, 14, 16, 13, 10, 8, 12) d) (25, 14, 12, 13, 16, c) (25, 14, 16, 13, 10, 8, 12) d) (25, 14, 12, 13, 16, c) (25, 14, 12, 13, 14, 12, 14, 12, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14	c) (25, 14, 16, 13, 10, 8, 12) d) (25, 14, 12, 13, 10, 8, 16) Consider the following C code: int f (int n) { static int p=0; If (n <=0) return 1; If (n> 3) { p=n; return f(n-2) + 2; } return f(n-1) + p; } What is the value of f(4)? a) 5 b) 4 c) 7 What is the Average complexity of quicksort algorithm? a) O(nlogn) b) O(n²) c) O(n) d) O(n/2) A structure that can be placed within another structure is known as a) Self referential structure b) Nested structure c) Parallel structure d) Pointer to structure thuffman algorithm can be implemented using a a) Dequeue b) Queue c) Priority queue A binary tree of height h has at least h nodes and atmost

11.	The process of examining a) Hashing	ng memory locations in a b) Collision	a hash table is called c) Probing	d) Addressing
12.		•	oncatenate the three str	
	a) strcat(s1, s2, s3)		b) strcat(s1,(strcat(s2,s3	3)))
	c) strcpy(s1, strcat(s2, s	3))	d) None of these	
13.	A linklist is a			
	a) Random access struc	cture	b) Sequential access str	ucture
	c) Both		d) none of these	
14.	Which of the following	is stable sorting algorith	m	
	a) Merge sort	b) Insertion sort	c) Radix sort	d) All of these
15.	Candidate key is also kr	nown as		
	a) superkey		b) Irreducible superkey	
	c) Foreign key		d) Primary key	
16.	Which of the following	is the binary operation?		
	a) Union	b) Join	c) Cartesian Product	d) All of these
17.	Which of the following	is not classified as prima	ary storage?	
	a) Main memory	b) Cache	c) Magnetic disk	d) Flash memory
18.	ALU works on the instru	uctions and data held in	the	_
	a) Notebook	b) Registers	c) Capacitors	d) I/O devices
19.	2 ⁷⁰ ?			
	a) Exabyte	b) Petabyte	c) Zettabyte	d) None of these
20.	The program			
m	ain()			
{				
	int i = 5;			
	i=(++i)/(i++);			
	printf("%d", i)	;		
	prints a) 2	b) 5	c) 1	d) 6
21	•	•		·
۷1.	a) 5	b) 14	eated out of 4 distinct ke c) 24	ys r d) 35
22	•	,	•	•
ZZ .	a) Merge sort	b) Bubble sort	owest worst case comple c) Quick sort	d) Selection sort
		,	•	d) Selection sort
23.	·	oresentation of the deci		d) 10001
2.5	a) 1111	b) 11111	c) 111111	d) 10001
24 .	What is the swap space		h) staring the device de	ivors
	a) saving the super bloc		b) storing the device dr	IVEIS
	c) saving temporary H	ivir bages	d) saving process data	

25.	FIFO is a	algorithm.		
	a) Preemptive	b) Non preemptive	c) Both a) and b)	d) None of these
26.	A Boolean function $x^{\prime}y^{\prime}$	+ xy + x'y is equivalent to	0	
	a) x' + y'	b) x + y	c) x + y'	d) x' + y
27.	The minimum number of	of D flip flops needed to	design a mod-258 count	er is
	a) 9	b) 8	c) 512	d) 258
28.	The hexa decimal repre	sentation of 255 ₁₀ is		
	a) 15F	b) FF	c) F15	d) 1515
29.	•	needed in a 32x1 multip		
	a) 32	b) 1	c) 5	d) 4
30.	How many 3 to 8 line d decoder without using		input are needed to con	struct a 6 to 64 line
	a) 7	b) 8	c) 9	d) 10
31.	The distance that can co	over by a cat6 cable with	out repeater is	
	a) 100 feet	b) 100 meter	c) 300 meter	d) 500 meter
32.	·	passing mechanism in C		
	a) call by value		b) call by reference	
	c) call by pointer		d) None of these	
33.	_		given graph by breadth fi	
	a) Stack	b) Set	c) List	d) Queue
34.	The Pre-order and Inor respectively. Post orde		y tree are F A E K C D H G	i B, E A C K F H D B G
	a) FAECKDHGB		b) E K C A H B G D F	
	b) ECKAHGBDF		d) E C K A H B G D F	
35.	Which of the following	system software resides	in main memory always	?
	a) Text editor	b) Assembler	c) Loader	d) All of these
36.	Loss in signal power as	light travels down the fik	per is called?	
	a) Attenuation	b) Propagation	c) Scattering	d) Interruption
37.	Which of the following	is private IP address?		
	a) 192.168.24.43		b) 168.172.19.39	
	c) 172.15.14.36		d) 12.0.0.1	
38.		tween JK and RS flip-flop	is that?	
	a) JK flip-flop does not	•		
	b) there is feedback in .c) JK flip-flop accepts be	·		
		n of junction cathode m	nultivibrator	
39.		-	n-of-products (SOP) form	17
	_	•	c) (A + B)(C + D)	

40.	The inner core of an op	tical fiber is		
	a) Glass or plastic	b) Copper	c) bimetallic	d) liquid
41.	Which layers of the OS	I model does data comp	ression?	
	a) Network	b) Datalink	c) Physical	d) Presentation
42.	Router operates in			
	a) Data link layer		b) Transport layer	
	c) Network layer		d) All of the above	
43.	ARP is used to find			
	a) IP address	b) MAC address	c) Subnet address	d) Host address
44.	802.5 is			
	a) CSMA/CD	b) Token Ring	c) Token Bus	d) None of these
45.	The number of address	lines required to addres	s 8 GB memory is	
	a) 8	b) 1024	c) 32	d) 33
46	. Which one of the follow	wing uses UDP as a trans	sport protocol?	
	a) HTTP	b) Telnet	c) DNS	d) SMTP
47.	The maximum number	of hosts in Class C using	the masks 255.255.255.0)?
	a) 255	b) 2 ⁸	c) 254	d) none of these
48.	The binary number (110	$01101.111)_2$ is equivalen	nt to	
	a) (109.875)10		b) (109.89)10	
	c) (109.835)10		d) (101.111)10	
49.	An organization has a c subnet mask would be	class-B network and wish	nes to form subnets for 6	4 departments. The
	a) 255.255.0.0		b) 255.255.64.0	
	c) 255.255.128.0		d) 255.255.252.0	
50.	Which of the following	is not practically possible	e ?	
	a) SISD	b) SIMD	c) MISD	d) MIMD
51.	Which of the following	does not support more t	han one program at a ti	me?
	a) DOS	b) Linux	c) Windows	d)Unix
52.	Which is not an externa	l command?		
	a) Edit	b) XCOPY	c) Sys	d) None of the above
53.	A 8 bit microprocessor	must have		
	a) 8 addresss line		b) 8 data lines	
	c) 8 control lines		d) None of the above	
54.	Trojan-horse programs			
		ams that allow unauthor		
		s that do not slow up the	e system	
	c) Really do not usually			
	d) Usually or immediate	ery discovered		

55.	A common bus can be o	designed using	h) Thurs state huffers	
	a) multiplexerc) both a and b		b) Three state buffersd) None of these	
56	Cache memory is imple	mented using	a, mone or enese	
50.	a) Dynamic RAM	b) EPROM	c) EEPROM	d) None of the above
57.	The highest priority into	errupt in 8085 microproc	essor is	
	a) INTR	b) RST 7.5	c) TRAP	d) RST 5.5
58.	How many full adders	are needed to add two 4	bit numbers ?	
	a) 8	b) 2	c) 4	d) 16
59.	Thrashing			
	a) Reduces page I/O			
		e of multiprogramming		
	c) Implies excessive paged) Improve the system	-		
60	• •	•	٨	
60.	a) assembler directive	ement for action is called	u b) imperative statemer	nt
	c) declarative statemer	nt	d) None of the above	
61.	Cache memory is used		•	
	a) Ensure fast booting	, ,	b) Replace static memo	ory
	c) Relace harddisk		d) none of the above	
62.	With segmentation, if the length of logical address	there are 64 segments ar	nd maximum segment si	ze is 512 words; the
	a) 12	b) 6	c) 15	d) 9
63.	Which of the following	file extensions indicate o	only graphics files?	
	a) BMP and DOC	b) TXT and STK	c) JPEG and TXT	d) BMP and GIF
64.	Status bar shows differ	ent types of keys:		
	a) Num lock key	b) Caps lock key	c) Scroll lock key	d) All of these
65.	The default workbook	opens withwo	orksheet.	
	a) 3	b) 4	c) 1	d) None of these
66.	A sparse matrix is bette	er represented using a/ar	n:	
	a) array	b) binary tree	c) multi-linked list	d) stack
67.	-	ansmission system, the r	•	
	a) serial transmission		b) parallel transmission	l
	c) Either serial or para		d) None of the above	
68.	•	lata communications net	·	odia
	a) the numbers of user c) the hardware and ne	s etwork operating system	b) the transmission med) All of the above	euld
	c, the haraware and he	LIVE OF COPCIONING SYSTEM	a, mi or the above	

69.	Consider the follow switch(input)	ing program fragment:				
	{					
		printf("one");				
	case '3' "	: printf("three");				
	case '5'	: printf("five");				
	default:	printf("odd");				
		break;				
	}					
	What will be printe	d when input is '3'?				
	a)Three	b) threeodd	c) threefiveodd	d) three three three		
70.	Consider the follow Int a[10]; int *	_				
	Which of the follow	ing statement is incorre	ct ?			
	a) P=a+2;		b) p=a+2; *p=a[5];			
	c) a=p		d) p=&a[3];			
71.	Which of the follow	ring preprocessor directi	ves is used to create ma	acros		
	a) #include	b) #ifdef	c) #define	d) undef		
72.	chmod command ir	n UNIX/LINUX				
	b) makes the file h c) changes the au	rrent execution status from the secution status from the secution of the secution permission cess permissions of a file	pe seen using the Is com			
73.	In vi editor we can p	paste a deleted line usin	g			
	a) Y	b) cp	c) p	d) paste		
74.	Which one of the fo	ollowing file allocation st	rategy is used by UNIX (operating system		
	a) contiguous alloc	_	b) Linked allocatio			
	c) Indexed allocation	on	d) Sequential alloc	d) Sequential allocation		
75.	•	ap drives, with n process maximum value of n for	· · ·	ach process may need two ock free?		
	a) 6	b) 5	c) 4	d) 3		
76.	The command shift	\$n will				
	a) shift positional	parameters by the value	e of n.			
	b) shift positional	parameter by 1				
	c) not shift position	onal parameter				
	d) result in an erro	or				
77.	context switching is	::				
	a) part of spoolin		b) part of poling			
	c) part of interrup	ot handling	d) part of interrup	t servicing		

78.	Swiches are			
	a) unicasting device		b) multicasting	
	c) broadcasting		e) none of these	
79.	The overhead in time di	ivision multiplexing is re	quired for	
	a) synchronization		b) clock recovery	
	c) error-control		d) none of these	
80.	HDLC is a	protocol.		
	a)Character-oriented		b) bit oriented	
	c) byte oriented		d) count oriented	
81.	which of the following i	s not a library function	?	
	a) isprint()	b) isdigit()	c) isspace()	d) none of these
82.	Which one is not true?			
	a) A relation is in BCNF	if it is in 4NF		
	b) BCNF is stricter than	3 NF		
		if every determinant of	the relation is a candidate	te key
	d) All are true			
83.			be specified with the he	
	a) primary key	b) Secondary key	c) Foreign key	d) None of these
84.	Which of the following	is not a proper state of t	transaction?	
	a) Partially aborted		b) partially committed	
	c) Aborted		d) Committed	
85.	Which one is authorizat	•		
	a) Access	b) Allow	c) Grant	d) None of these
86.	Desirable properties of	transactions are		
		ncy control, isolation, du	*	
	•	cy preservation, isolatio	n, durability	
	c) Atomicity, correctnes	ss, isolation, durability erilizable, isolation, dura	hility	
07	•		•	
87.	Spooling is most benefice a) Most jobs are I/O bo		ig environment where	
	b) Most jobs are CPU b			
	•	led as I/O bound and CP	OU bound	
	d) There is limited prim	ary memory and need f	or secondary memory	
88.	How many 16Kx1 RAM	chips needed to provide	e a memory capacity of 2	256 Kbytes ?
	a) 16	b) 8	c) 64	d) 256

89.	89. Which of the following concurrency control protocols ensure both conflict serializability and freedom from deadlock?			
	1. 2 phase locking			
	2. Time stamp ordering	g		
	a) 1 only	b) 2 only	c) Both 1 and 2	d) Neither 1 nor 2
90.	Consider a B+ tree in who number of keys in any i		per of keys in a node is 5	. What is the minimum
	a) 1	b) 2	c) 3	d) 4
91.	their CPU burst time re in Round Robin schedu	presents are 4, 1, 8, 1 tir ling algorithm with time		e completion time of A
	a) 10	b) 8	c) 9	d) 4
92.	To expedite the process	s of page table access OS	Suse	
	a) Main memory		b) TLB	
	c) Virtual memory		d) Magnetic memory	
93.	Which of the following a) FIFO	page replacement algori	ithm is only theoretical u b) LRU	ise?
	c) Optimal page replace	ement	d) None of these	
94.	Memory compaction is	a solution for		
	a) Internal fragmentati	ion	b) External fragmentat	ion
	c) Buddy system		d) All of these	
95.	Where does the swap s	pace reside ?		
	a) RAM	b) Disk	c) ROM	d) On chip cache
96.	In the context of operat processes	ting systems, which term	n would you not associat	e with scheduling of
	a) Round Robin	b) Preemptive	c) Waiting queues	d) interruptible
97.	Which of the following	design is both software a	and hardware independe	ent ?
	a) Logical	b) Physical	c) Conceptual	d) None of the above
98.	A directed graph which	n detects a deadlock is ca	alled	
	a) Cyclic graph		b) wait for graph	
	c) deadlock graph		d) deadlock detection g	graph
99.	Which of the following	model is called meta mo	odel	
	a) Prototype model		b) water fall model	
	c) Iterative water fall m	odel	d) spiral model	
100). Which of the following	g software testing metho	od requires programming	g knowledge
	a)black box testing	b) white box testing	c) Both a) and b)	d) none of these
10:	L. In round robin schedu	ling as time quantum is i	increased, the average to	urn around time
	a) increases	b) decreases	c) varies irregularly	d) remain constant

102	1. Content coupling	different modul	es of a software is catego 2. Common coupling	orized as follows 3. Control coupling
	 stamp coupling Coupling between mod follows 	ules can be rank	5. Data coupling ed in the order of least d	esirable to most desirable as
	a) 1, 2, 3, 4, 5	b) 5, 4, 3, 2, 1	c) 1, 2, 4, 3, 5	d) 4, 2, 5, 3, 1
103	3. The IP address of a page	cket is normally a	analyzed by the	
	a) switch	b) Hub	c) Router	d) Modem
10	4. A network that can fu			N - 11 - 6 - 1
	a)Ring network	b) Star network	c) Bus network	d) All of the above
105	5. The following is not a		_	N.C. i
	a) Google	b) Excite	c) Webcrwler	d) Scientra ans
106	i. In Excel, the simplest valuea) by menu commandsc) by mouse	vay to move data	a from one location to an b) by the drag a d) by short cut r	nd drop method
107	7. The basic features of valuea) Search and display valueb) send and receive e-naluec) switch over betweenalued) All of the above	arious websites nail messeges	s Web pages are uniquel	y defined using
108	B. Which is the default so	cripting language	e in ASP ?	
	a) Javascript	b) Perl	c) EcmaScript	d) VBscript
109). SSL is a			
	a) Scripting language	b) Browser	c) Secure conne	ection d) Authoring tool
110). Which one is not a siz	e measure of sof		
	a) LOC		b) Function poir	
	c) Halstead's Program	_	d) Cyclomatic co	omplexity
111	a. Regression testing is db. Software Developmentc) Feasibility study		b) Maintenance d) None of these	-
112	 Consider the following Int model(int x, int y) while (x !=y) { 	-	le	
If(x	: > y) then x=x-y;			
	e y=y-x;			
} reti	ırn x;			
}	лі і А,			
-	What is a cyclomatic co	mplexity of the a	above module?	
	a) 1	h) 2	c) 3	d) 4

113. Which of the following is	not software reliabilit	y matrics	
a) Mean time between f	ailure	b) Availability	
c) Throughput		d) Probability of failure	on Demand
114. Which of the following is	s not a phase in Compi	ler?	
a) Lexical Analyzer	·	b) Code generation	
c) symantic Analyzer		d) None of these	
115. The world wide web inte	egrates which of the fo	llowing	
a) E-mail, Telnet, Usene	•	b) Sound and movies fil	es
c) a and b		d) All internet commun	
,	ndent phase(s) of som	•	
116. Pick the machine independent	ndent phase(s) of com		
a) Syntax analysisc) Intermediate code g	concration	b) Lexical analysisd) All of the above	
-		•	
117. Which of the following is			
a) Inheritance b)) Encapsulation	c) Polymorphism	d) Parallelism
118. What is the output of the	e following program?		
void main()			
{			
atatia intendes - E			
static int value = 5	;		
float total;	/ 3		
total = value + val	ue / 2;		
cout << total ;			
} 2\75	١ ٦ ٥	د/ ۵ ۵	d) 7
•	7.0	c) 5.0	d) 7
119. The Java compiler transl			
a) machine code. b)) Assembly code.	c) Byte code.	d) JVM code
120. Single inheritance, Multip	ple inheritance, and A	ggregation comes under	
a) Modularity b)) Typing	c) Hierarchy	d) None of the above
121. How big is the conventio	nal memory in a PC?		
a) 640 K b)) 340 K	c) 540 K	d) None of these
122. The maximum zoom in e	excel is		
a) 400% b)) 1000%	c) 500%	d) 200%
123. The short cut key used to	rename file/folder is		
-) F4	c) F2	d) F1
124. The default column width	h of an excel cell is		
) 500	c) 200	d) 8.43
125. How many ways you can	save a document in M	IS-word	
) 2	c) 4	d) 5

126. Which of the following	g is not a type of firewall	3		
a) Packet-filtering firewa	II	b) Proxy firewall		
c) Stageful Inspection		d) None of these		
127. How long is an IPV6 ac	ddress			
a) 32 bits	b) 48 bits	c) 128 bits	d) 128 bytes	
128. Relational Algebra is				
a) Data definition langua	ge	b) Meta language		
c) Procedural language		d) Non procedural lang	uage	
129. The data model which	describes how the data	is actually stored is		
a) internal model		b) External model		
c) Logical model		d) None of these		
130. An association of seve	eral entities in an Entity R	Pelation model is called		
a) Tuple	b) Relationship	c) record	d) Field	
131. Which normal form is	considered adequate for	r relational database desi	·	
a) 2 NF	b) 3 NF	c) 4 NF	d) BCNF	
132. Bottom up parser gen	erates	•	·	
a) right most derivation i		b) right most derivation	1	
c) left most derivation		d) left most derivation in reverse		
133. In case of operator ov	verloading, operator fund	ction must be .		
-	ic member functions			
2. Non	- static member function	ns		
	nd Functions			
a) Only 2		b) Only 1, 3		
c) Only 2 , 3		d) All 1, 2, 3		
134. Which of the following	•			
 a) When a base class is members of the derive 		lic members of the base	class become private	
		ic members of the base c	lass becomes public	
members of derived cla			idos becomies public	
c) When a base class is	privately inherited, a pri	ivate member of base cla	ss becomes private	
member of derived cla				
-		cted members of base cla	ass becomes protected	
members of derived class. Producer consumer p		ing		
a) Semaphore	b) Monitor	c) event counters	d) All of the above	
·	•	•	•	
136. Standard interface us		·		
a) Hypermedia	b) RealAudio	c) AAC	d) MIDI	
137. The creation of motion	•			
a) Sampling	b) 3-D modeling	c) transition	d) Animation	

138. What is the process that condenses files so they can be stored in less space and transmitted over the Internet at a faster rate ?			
a) Data downloadingc) Digitization		b) Data compressiond) Defragmentation	
139. Software that stores lines and shapes rather than individual pixels is known as			
a) Vector graphics software		b) raster graphics software	
c) bit-mapped graphics software		d) resolution software	
140. A compiler running on computers with small memory would normally be			
a) a multipass compiler		b) single pass compiler	
		d) None of these	
141. Input of a D flip flop is 1. The output of the D flip flop is a) 0 b) 1			
c) Either 0 or 1		d) Can not say	
·		•	
142. After you service a laser printer, you notice dirty print. Which of the following would correct the problem.			
a) Clean the developer tank		b) Reset the printer	
c) Run several blank pages d) Clean the laser diode			
143. Which common bus specification provides the fastest data transfer rate?			
a) VL bus	b) ISA	c) PCI	d) All of these
144. In the terminology used in the RS-232C communication standards Modems are			
a) DTE	b) DCE	c) FSK	d) None of these
145. The number of hardware interrupts that the processor 8085 consists of is			
a) 1	b) 3	c) 5	d) 7
146. The size of each segm			
a) 64 KB	b) 24 KB	c) 256 KB	d) 50 KB
147. How many type of cac	the memory:		
a) 2	b) 3	c) 1	d) 4
148. The physical address of memory in 8086 is			
a) 20 bits	b) 16 bits	c) 24 bits	d) None of these
149. Which of the following is used for manufacturing chips?			
a) Control bus		b) control unit	
c) Parity unit		d) Semiconductor	
150. What is SIM in 8085 ?			
a) Select interrupt Mask		b) Set interrupt mask	
c) Sorting interrupt mask		d) None of these	

Space for Rough Work

Space for Rough Work